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Abstract

Nowadays, a typical processor may have multiple processing cores on a single chip. Fur-

thermore, a special purpose processing unit called Graphic Processing Unit (GPU), origi-

nally designed for 2D/3D games, is now available for general purpose use in computers and

mobile devices. However, the traditional programming languages which were designed to

work with machines having single core CPUs, cannot utilize the parallelism available on

multi-core processors efficiently. Therefore, to exploit the extraordinary processing power of

multi-core processors, researchers are working on new tools and techniques to facilitate

parallel programming. To this end, languages like CUDA and OpenCL have been intro-

duced, which can be used to write code with parallelism. The main shortcoming of these lan-

guages is that programmer needs to specify all the complex details manually in order to

parallelize the code across multiple cores. Therefore, the code written in these languages is

difficult to understand, debug and maintain. Furthermore, to parallelize legacy code can

require rewriting a significant portion of code in CUDA or OpenCL, which can consume sig-

nificant time and resources. Thus, the amount of parallelism achieved is proportional to the

skills of the programmer and the time spent in code optimizations. This paper proposes a

new open source compiler, Rubus, to achieve seamless parallelism. The Rubus compiler

relieves the programmer from manually specifying the low-level details. It analyses and

transforms a sequential program into a parallel program automatically, without any user

intervention. This achieves massive speedup and better utilization of the underlying hard-

ware without a programmer’s expertise in parallel programming. For five different bench-

marks, on average a speedup of 34.54 times has been achieved by Rubus as compared to

Java on a basic GPU having only 96 cores. Whereas, for a matrix multiplication benchmark

the average execution speedup of 84 times has been achieved by Rubus on the same GPU.

Moreover, Rubus achieves this performance without drastically increasing the memory foot-

print of a program.

1 Introduction

Since the beginning of computing, computer users desire to have higher computing speed to

perform tasks previously considered near impossible. A few examples of such tasks are
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realistic weather forecast, disaster predictions, calculating moves of complex games, and

real-time simulations. Historically, efforts have been made in digital computing to increase

processing speed mainly using three techniques: 1) increasing the clock speed of processor,

2) decreasing memory access time, and 3) improving instruction level parallelism (ILP).

These techniques resulted in significant increase in computing speed over the years, until

they reached to their limits. That is, due to power wall, memory wall and ILP wall it has now

become excessively difficult to further enhance the execution speed using aforementioned

techniques [2].

Thus, since the start of 21st century, in order to excel in business and fulfill user’s comput-

ing needs, CPU vendors have been forced to move from single-core to multi-core architec-

ture. Nowadays, a processor has several processing cores on a single chip. In addition, a

special processing unit, called GPU, which was initially designed for 2D/3D games, is also

made available in personal computers, laptops and mobile devices. A modern GPU may con-

tain up to several thousands simple processing units optimized for graphic processing but

may be also used for general purpose computing. However, traditional programming lan-

guages, which were designed to deal with single core machines, cannot fully utilize the multi-

core CPUs and GPUs efficiently. To this end, a few low-level languages including Compute

Unified Device Architecture (CUDA) [3] and Open Computing Language (OpenCL) have

been introduced to exploit the parallelism capabilities of the underlying hardware. The

main shortcoming of these languages is that the programmer needs to specify all the

complex details about how to distribute the code on multiple cores for parallel execution.

Thus, the amount of parallelism achieved is proportional to the skills of the programmer

and the time spent on code optimization. Furthermore, the low-level code written in such

languages becomes complex and difficult to understand, debug and maintain as it contains

program logic as well as commands to distribute data across multiple cores and merge

results.

There are some high level APIs like JCUDA [4], JOCL [5] and JavaCL [6] which provide

Java bindings for these languages. Some other APIs including Aparapi [7] and Rootbeer [8]

provide a high-level interface to work with GPUs and Multi-core CPUs. To use these APIs

and bindings, one needs to learn and understand the parallelism techniques and the meth-

odologies of actual GPU programming languages. However, parallel programming is not

common as it is more difficult than sequential programming. Hence, either application pro-

grammers should be trained to always write parallel code or there should be an intermediate

layer, a compiler, that may analyze the code, find out the portions of the code that may run

in parallel and seamlessly transform them to run in parallel on multiple processing units.

The option of having such a compiler is preferred as it does not require the programmer to

have the knowledge of parallel programming techniques and it can transform the legacy

code as well.

This paper presents Rubus [1], an open source compiler that can automatically transform a

sequential program to a parallel program without requiring any input from the programmer.

Thus, a programmer who has no knowledge of the underlying hardware or know-how of par-

allel programming can benefit from the hardware parallelism capabilities by simply compiling

a sequential program using Rubus. Rubus relieves the burden of learning new languages,

rewriting the code and specifying low-level details needed to parallelize the code. It aims to

provide seamless data level parallelism by exploiting the massive computational power of

GPUs and multi-core CPUs, without writing any extra code. The portion of the code that con-

sumes the major part of total execution time usually consists of loops. A massive data level par-

allelism can be achieved by executing concurrent loop iterations in parallel. Rubus seamlessly

Rubus
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finds out the loops and analyses them. In case, different iterations of the loops are independent

or have a manageable dependency, Rubus transforms them into OpenCL and executes them in

parallel. This achieves a massive boost in the program’s execution speed by utilizing the under-

lying parallel hardware efficiently. Instead of optimizing the source code, Rubus transforms

Java bytecode directly, thus making Rubus a compiler of dozens of programming languages

that generate Java bytecode.

According to our knowledge, there is no other work like Rubus in Java which could analyze

code automatically and transform it into OpenCL to make it run in parallel on multi-core

CPUs and GPUs. Java-GPU, on which Rubus is based, transforms code into CUDA that limits

it to Nvidia’s GPUs only. In contrast, Rubus’s transformed code is compatible with the CPUs

and GPUs from dozens of vendors. Furthermore, Java-GPU transforms code into C language

and compiles it into an object (i.e.,.o) library that makes the code platform dependent. It also

requires the C toolchain and CUDA toolkit to be configured on the machine. On the other

hand, Rubus works purely in Java and generates platform independent and portable code.

The accuracy of the transformed code by Rubus is carefully maintained, that is, the output

of a program is not affected during the analysis and optimization of the bytecode. The pro-

grams having loops and manageable dependencies between loop iterations execute in parallel

and faster using Rubus. However, if there is a small set of operations on a big set of data, it may

cause a big data transfer overhead from main memory to GPU’s memory and vice versa. Thus,

Rubus is useful if a program has reasonably large computation requirements.

Following are the main contributions of Rubus.

1. Rubus provides massive parallelism and achieves execution speedup for different applica-

tions related to various domains of life.

2. Existing solutions require a programmer to write and optimize code in a specific way using

language specific tools and techniques. Thus, they require the programmer to be trained

first. In contrast, with Rubus, a programmer doesn’t need to modify or upgrade the code to

achieve parallelism. Therefore, a programmer doesn’t require any extra training.

3. Rubus works with Java bytecode. Thus, it is compatible with any programming language

that generates intermediate Java bytecode.

4. Rubus automatically selects the best available device (CPU/GPU) at runtime for the execu-

tion of transformed code. Currently, the device having the largest amount of computing

units is considered the best. If a computer consists of more than one GPU units, the GPU

having maximum computing units is selected.

5. Existing work mainly targets GPUs from a specific vendor, i.e., Nvidia. In contrast, Rubus

works with different GPUs and CPUs from multiple vendors, e.g., Intel, Nvidia, AMD and

Mali’s.

6. Rubus performs automatic analysis of the bytecode to identify the portion of the code that

can be parallelized. Optionally, a programmer may insert some directives/annotations to

make static analysis more accurate.

7. OpenCL has some limitations that make code transformation difficult. For example,

OpenCL does not support the goto statement, which is a major part of Java bytecode.

Conditional statements in Java source code generate goto statements in Java bytecode.

Rubus avoids OpenCL limitations to some extent by reversing the conditions in order to

support simple conditional statements within the loop body.

Rubus
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The paper is organized as follows. Section 2 describes the methodology used in the design

of Rubus compiler. Section 3 describes the experiments conducted and discusses results. Sec-

tion 4 discusses related works. Finally, Section 5 concludes the paper while we provide future

work and limitations of Rubus in Section 6.

2 Methodology

This section explains how Rubus works and describes the various stages of its code optimiza-

tion algorithm. Rubus takes Java bytecode as input and outputs modified bytecode, which is

ready to run on multiple cores. To this end, Rubus generates OpenCL kernel for each part of

code that it deems appropriate for execution on multiple cores. An OpenCL kernel refers to a

function executed on different cores with distributed data. The high level stages of Java code

transformation using Rubus are shown in Fig 1.

Rubus makes all decisions about code optimization at compile time without taking into

consideration the underlying hardware. However, the decision about the data distribution

among different cores for parallel execution is carried out at runtime based on the capabilities

of the underlying hardware. Fig 2 elaborates the working of Rubus by listing different stages of

compilation process. First of all, the bytecode is read by the compiler and divided into basic

blocks. Then a Control Flow Graph (CFG) is generated from these basic blocks. The domina-

tor based technique is applied on the CFG to find loop(s). When a loop is found, it is passed to

both automated and manual dependency analyzers. In case an analyzer establishes that a loop

can be parallelized, it is checked for trivialization. If it is a trivial loop, it is imported into the

next phase where live variable analysis is applied on it to find out the arguments for kernel and

then kernel is generated in OpenCL based on the body of the loop. After the kernel has been

generated a launcher method is also generated in JavaCL to launch this kernel. In the next

phase, this loop is replaced with a function call to the launcher method with appropriate argu-

ments. Then the code segments for the kernel and launcher are merged into class file using

Javassist library and a new class file is exported. This new class file performs the exact task as

the original class file, however, it utilizes multiple GPU/CPU cores to run code in parallel effi-

ciently. We used the vector multiplication code example of Listing 1 to illustrate the impact of

different transformation steps.

public float [ ] mulVector(float [ ] inA, float [ ] inB) {
int n = inA.length;
float [ ] result = new float [n];
for (int i = 0; i < n; i++) {
result [i] = inA [i] � inB [i];

}
return result;

}
Listing 1. Vector Multiplication Source Code

2.1 Reading bytecode

To read and modify bytecode, a bytecode engineering framework called ASM (v3.2) [9] is

used. ASM is a Java bytecode manipulation and analysis framework, which uses visitor design

pattern to go through the bytecode. Listing 2 has the bytecode generated after the compilation

of Java program shown in Listing 1. This bytecode will be used as an example throughout this

paper, to illustrate different stages of code transformation using Rubus.

Rubus
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Fig 1. High level overview. High level overview of the transformation of Java code to parallelized code using

Rubus.

https://doi.org/10.1371/journal.pone.0188721.g001
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Fig 2. Implementation overview. Implementation overview of Rubus with different stages of the code

transformation.

https://doi.org/10.1371/journal.pone.0188721.g002

Rubus
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public static float [ ] multiplyVector(float [ ] inA, float [
] inB) {

/� L24 �/
0 aload_0; /� inA �/
1 arraylength;
2 istore_2; /� n �/
/� L25 �/
3 iload 2; /� n �/
4 newarray 6; /� new float [ ] �/
6 astore_3; /� result �/
/� L26 �/
7 iconst_0;
8 istore 4; /� i �/
10 goto 19;
/� L27 �/
13 aload_3; /� result �/
14 iload 4; /� i �/
16 aload_0; /� inA �/
17 iload 4; /� i �/
19 faload;
20 aload_1; /� inB �/
21 iload 4; /� i �/
23 faload;
24 fmul;
25 fastore;
/� L26 �/
26 iinc 4 1; /� i++ �/
29 iload 4; /� i �/
31 iload_2; /� n �/
32 if_icmplt -19;
/� L29 �/
35 aload_3; /� result �/
36 areturn;

Listing 2. Bytecode of the vector multiplication example whose source code is given in List-

ing 1.

2.2 Basic block

The bytecode in the class file is partitioned into basis blocks. The flow of control can only

enter the basic block through the first instruction, which is also called an entry point or leader

of a basic block. The flow of control can leave the block only after the execution of its last

instruction, called an exit point. There can be no Jump/Halt instruction in between the entry

and exit points of a basic block. In other words, a basic block is set of consecutive instructions

where only the first instruction of the block can be a target of a jump instruction and only the

last instruction can be a jump instruction.

To find basic blocks, the code analyzer traverses the bytecode and marks a cut wherever it

finds an instruction, which transfers or receives the control to/from any other point of the

code [10]. This instruction might be a conditional jump, goto or a branch target instruction.

After that, the bytecode is split into blocks from these cuts. Applying the above basic block

Rubus
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algorithm on the bytecode of the vector multiplication code (Fig 1) produces the basic blocks

shown in Fig 3.

In Fig 3, the first block starts with the first statement of the program and ends at line 10 due

to a goto statement. This goto statement transfers the program control to line 29. Therefore,

block 2 starts at line 29 and ends at line 32 due to an if_icmplt statement. The if_icmplt
statement transfers control to line 13 in case the condition is true. Thus, block 3 starts from line

13. The block 3 ends at line 26 because the instruction at line 29 is already the entry point of

block 2. if_icmplt transfers control to line 35 in case the condition is false. Therefore, block

4 starts at line 35 and ends at line 36, which is the last statement of the function. In the Fig 3

each jump instruction is assigned red color, whereas a target of jump instruction is colored

blue.

2.3 Deriving control flow graph

The flow between the basic blocks is represented using Control Flow Graph (CFG). CFG is a

directed graph in which each node represents a basic block and an edge represents the explicit

flow of control between the nodes it connects. There is a directed edge from block-x to block-y

if the last statement of block-x is a jump statement to the leader (first statement) of block-y.

Applying the CFG algorithm on the vector multiplication’s basic blocks of Fig 3 produces CFG

shown in Fig 4.

2.3.1 Finding dominator. A node d dominates a node n, if every path of directed edges

from the entry node of the CFG to n must go through node d. By definition, every node domi-

nates itself and the entry node dominates all the nodes in the CFG. A CFG node may have

more than one dominator. However, it will always have a unique immediate dominator. The

immediate dominator is the closest dominator to the CFG node. For example, the nodes J in

B1 = {

0: aload_0
1: arraylength
2: istore_2
3: iload_2
4: newarray
6: astore_3
7: iconst_0
8: istore

}

B2 = {

31: iload_2

}

B3 = {

14: iload
16: aload_0
17: iload
19: faload
20: aload_1
21: iload
23: faload
24: fmul
25: fastore
26: iinc

}

B4 = {

35: aload_3

}

10: goto 29

32: if_icmplt -19
36: areturn

29: iload 13: aload_3

Fig 3. Basic blocks derived from bytecode of Listing 2. The flow of control can only enter the basic block through the first instruction,

which is also called an entry point or leader of a basic block.

https://doi.org/10.1371/journal.pone.0188721.g003

Rubus
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B1

B2

B3 B4

True

False

Start

Exit

Fig 4. Control flow graph derived from the basic blocks of Fig 3. A control flow graph contains possible

paths that might be traversed during the execution of a computer program. A simple control flow graph is

shown in the figure is derived directly from the basic blocks of Fig 3.

https://doi.org/10.1371/journal.pone.0188721.g004

Rubus
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Fig 5 is dominated by node A, C, D, G and H. However, it has a unique immediate (closest)

dominator which is node H.

A dominator tree is a convenient way to represent the relations of dominator and immedi-

ate dominator. Dominator Tree contains the entry node as the root node and each node domi-

nates its descendant nodes. Rubus uses a well-known algorithm to find dominators [11] and

creates a dominator tree. Fig 5 shows the dominator tree and the corresponding CFG.

2.4 Loop detection

A loop in CFG is a set of nodes, say S, having a header node h such that from every node of S
there is a path of directed edges leading to h. Moreover, nodes in S can only be accessed

Fig 5. An example of creating the dominator tree (b) from a sample control flow graph (a). A control flow graph contains possible paths

that might be traversed during the execution of a computer program. A simple control flow graph is shown in a). The corresponding

dominator tree created from the control flow graph is shown in b). The dominator tree is a convenient way to represent the relations of

dominator and immediate dominator.

https://doi.org/10.1371/journal.pone.0188721.g005

Rubus
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through header node h by the nodes not being part of S. In order to find loops, Rubus uses a

dominator finding algorithm to identify back edges in the CFG as explained below. The pres-

ence of a back edge in a graph implies that a graph has a loop. In summary, identifying loops

in a CFG is a three step process:

1. Find dominate nodes corresponding to each node of the CFG.

2. Identify all back edges using dominate nodes information.

3. Use the back edges to identify loops.

2.5 Natural loop and loop nesting

A natural loop is a subset of graph S having a header node h such that every node in subgraph

is dominated by h. There must be a back edge from any node of subgraph to h. A back edge is

a direct edge from a node d to node h such that node d is dominated by h. A loop Y is the

nested or inner loop of loop X if X and Y have different headers hx and hy. Moreover, hy is

inside of the body of loop X, such that the set of nodes of Y are a subset of the nodes of loop X.

Rubus tries to parallel outer loops first in case of nested loops. Rubus uses the algorithms men-

tioned in [11], whose basic steps described above determine whether a given loop is trivial or

not. Fig 6 shows a natural and a nested loop (in a dotted box) while clearly showing back edges

of the CFG.

2.6 Finding trivial loop

A natural loop is called a trivial loop if it has only one conditional statement which exits the

loop. This condition must be on loop’s incremental indexing variable. The loop limit and

dimensions must be known at compile time because we generate separate thread for each

index of loop and in multi dimensions for each dimension of the loop and run them on GPU.

Incremental variable should increment on a static rate. Rubus accepts trivial loops for further

analysis. Rubus uses the well-known algorithms [11], to determine whether a given loop is a

trivial loop or not. Running this algorithm on set of loops returns the set of all trivial loops.

2.7 Dependency analysis

Rubus provides both automated and manual dependency checks for loops. It does not require

programmer input to carryout dependency analyses but a programmer may provide compiler

directives to help Rubus to better utilize parallelism. A programmer can direct Rubus to use

either automatic or manual dependency analysis, or use both through a command line

interface.

Manual analysis is based on method annotations provided by the programmer in the Java

code. A programmer can specify loop indices by their incremental variable names, which must

be considered for parallelization by Rubus. The syntax of method annotation is as shown in

Listing 3.

@Transform(loops={“i”})
public static void someMethod( ) {
for (int i = 0; i < 50; i ++) {

. . .

}
}
Listing 3. An Example of Transform Annotation

Rubus
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In contrast, using automatic analysis, Rubus finds, analyses and transforms loops by

itself. To run a loop in parallel on a GPU, there must not be any RAW (Read-After-Write)

and WAW (Write-After-Write) dependencies across iterations. Furthermore, there should

not be any loop carried dependencies. Dependency between different iterations of a loop is

known as loop carried dependency. To ensure that there are no loop carried dependencies,

some basic checks are implemented in Rubus. The variables that are local to a loop body

never cause the loop carried dependency. Thus dependency checks are only implemented on

static/instance variables and the variables defined before the loop body. To ensure that dif-

ferent iterations of loops don’t access the same memory location and a same memory loca-

tion must not be accessed from any other point of the program, following checks are

implemented.

1. Writes are not permitted to fields and arguments. Only local variables are allowed to be

written inside the loop body.

1

2

3

4

5

6

3 Header node

Backedge

(a) Natural loop

1

2

3

4

5

6

2 Header node for outer loop

Backedge

(b) Nested loop

3 Header node for inner (Nested) loop

Fig 6. (a) Natural loop (b) Nested loop. (a) A natural loop is a subset of graph S having a header node h such that every node in subgraph

is dominated by h. (b) A loop Y is the nested or inner loop of loop X if X and Y have different headers hx and hy.

https://doi.org/10.1371/journal.pone.0188721.g006

Rubus
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2. In case of writing to an array, there must be an increment variable which should be used to

access array indices and must be incremented by the same amount in each iteration. The

same rule applies if an array is being read and written in the same iteration of the loop. For

example, arr[i] = arr[i]�2; is a valid statement but arr[i+1] = arr[i]�2; and arr[i] = arr[i+1]�

2; are invalid statements as per restriction.

If a loop does not meet the above mentioned conditions, it would not be accepted for trans-

formation. However, all restrictions and violations are ignored in case of manual analysis.

A programmer configures the use of automatic and manual analyses side-by-side, he can

also help Rubus with the ignore compiler directive. This directive tells the automated analyzer

to not analyze a function which has ignore annotated before its body as shown in Listing 4.

@Ignore
public static void someMethod( ) {
. . .

}
Listing 4. Ignore Annotation

2.8 Loop extraction

A loop is treated as a basic block as well. If this basic block satisfies the imposed conditions,

Rubus replaces it with a function call to the kernel launcher and converts this block to OpenCL

kernel. All the variables used in loop need to be copied to/from a device memory and passed as

arguments to the OpenCL kernel. Rubus uses the live variable analyses technique to identify

the arguments for kernel.

2.9 Live variable analysis

Live Variable Analysis (LVA) is used to determine if a variable v holds a value at point p that

might be used in the near future. Rubus uses LVA to find out variables needed to copy to the

GPU memory before distributing code to that GPU. Furthermore, LVA is also used to find out

variables that must be copied back to the host from GPU memory, once GPU completes the

execution of a task assigned to it.

2.10 Kernel generation in OpenCL

Rubus generates kernel in OpenCL as a string field of the class file being transformed. Rubus

also generates a loader function in the class file that defines the size of the workgroup (a.k.a.

thread block) and computes the size of the workgroup grid. Subsequently, Rubus sends this

information to OpenCL compiler along with kernel code for parallel execution. Based on the

underlying hardware specification and information received from Rubus, the OpenCL com-

piler automatically decides the best possible configuration to distribute threads on various pro-

cessing units.

The code executed in the kernel saves results in the temporary variables which are copied

back, based on live variable analyses, to the host memory at the end of kernel execution.

2.11 Kernel launcher generation

The kernel cannot be called directly from Java code. Thus, a Java binding of OpenCL named

JavaCL is used to transfer data to GPU, execute kernel and copy result back to the host. JavaCL

is used to perform the prerequisite work and for calling kernel using the Java syntax. The pre-

requisite work includes context creation, device selection, copying data from the host to GPU,

Rubus
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loading kernel, executing kernel and copying result back from GPU. JavaCL is chosen in order

to avoid C/C++ compiler compatibility issues on different platforms.

2.12 Kernel merging

After generating the OpenCL kernel and its launcher (i.e., executor method), the next step is to

merge them into the bytecode. For this purpose, a library named Javassist is used, which can

compile source code on the fly and merge it into the bytecode.

The kernel is added in the same source file as a string field having the same name as kernel.

The kernel executor code is added as a function in the same class file having the same name

and parameter as kernel. The modified class file is exported to a given destination.

3 Performance evaluation

We used several algorithms and benchmarks from different areas of life to evaluate Rubus. This

section compares the performance of Rubus with benchmarks written using Java as well as

with programs developed using a parallel API from AMD, called Aparapi [7]. All of Aparapi’s

benchmarks are taken from Aparapi’s code repository, which are handwritten and optimized

by AMD developers themselves, so that an unbiased and neutral comparison with Rubus could

be drawn. Aparapi provides a high-level Java API to write code for a GPU. Aparapi decides at

runtime whether it should convert the code into OpenCL or run the code using Java threads. In

contrast, Rubus transforms the code into OpenCL using decisions made at compile time. Mak-

ing decisions at runtime has overhead that sometimes adversely affects the performance of pro-

grams written using Aparapi, making them run slower as compared to Rubus.

3.1 Experiments setup and hardware specifications

Junitbenchmark is a tracker program that can be used to track time and analyze performance

of Java programs [12]. To evaluate the performance of Rubus on several benchmarks and gen-

erate results, we have employed Junitbenchmark, with some modifications. These modifica-

tions are carried out to make charts and results more informative.

To produce results of each benchmark, 10 JVM warm-ups, followed by 10 benchmark

rounds were executed for a given input size. The JVM warm-up refers to the time it takes for

the JVM to find the hotspots of the code hence warm-up results are ignored. Instead, the sub-

sequent 10 benchmark rounds average is used as the final result. All benchmarks are evaluated

on HP Pavilion DV4 machine which has following specifications.

CPU: Inter(R) Core(TM) i7-2670QM @ 2.20GHZ 2.20GHZ

GPU: GeForce GT 630M 96 Cores 800 MHz—Texture Fill Rate 12.8 billion/sec

GPU Memory: DDR3/GDDR5, 2GB, Interface Width 128bit, Memory Bandwidth 32GB/

sec

OpenCL: 1.1 Supported

OpenGL: 4.4 Supported

RAM: 4.00 GB

Operating System: Microsoft Windows 8.1—64 bit

The following set of scientific problems and algorithms are chosen to evaluate the perfor-

mance of Rubus.

3.2 Matrix multiplication

Matrix multiplication is a widely used mathematical operation in graphics processing and

other scientific computations. For example, matrix multiplication can be used to solve

Rubus
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recurrence relations and to represent linear transformations between vector spaces. We used

n × n matrices with values of n as 32, 64, 128, 256, 512, 1024, and 2048 to produce results.

The graph in Fig 7, shows the performance comparison of Java, Rubus and Aparapi code

for matrices of different sizes. On a small input size, Rubus and Aparapi took more execution

time than the original Java code (not noticeable in graph of Fig 7). This is because, on small

input size the overhead of data transfer to different cores exceeds the benefit of speedup. How-

ever, as the size of input increases, the benefit of parallelism become more visible as both

Rubus and Aparapi require significantly less time than sequential programs written in Java.

Furthermore, on large input sizes, Rubus’s performance is many times better than Aparapi.

That is, a speedup of up to 83.93 times is experienced by the Rubus and only 4.3 times speedup

is experienced by Aparapi as compared to Java code.

3.3 Convolution

Convolution filtering is used to modify the characteristics of an image, that is widely used in

the field of image processing. Convolution function takes image and a matrix of number as

input. The matrix is used to filter the input image and to produce a transformed image as an

output. Convolution is often used to smooth, sharpen, enhance or blur an image. We used

images of dimensions n × n, with n as 32, 64, 128, 256, 512, 1024, 2048, and 4096. As shown in

Fig 8 performance of Rubus and Aparapi is almost same on small input sizes. Whereas, Rubus

performs slightly better (5.83x) than Aparapi (5.45) on image of size 2048 × 2048.

3.4 Mandelbrot set

The Mandelbrot set is the problem of complex dynamics, which was introduced and investi-

gated by French mathematicians Pierre Fatou and Gaston Julia [13]. It is the set of complex

numbers, which is obtained from the equation zðnþ1Þ ¼ z2
n þ c; z0 ¼ c. Here c is a complex

number. To produce images for a Mandelbrot set, the real and imaginary parts of each number

are treated as image coordinates. Pixels are colored according to the speed the sequence

Fig 7. Matrix multiplication benchmark. n × n matrices with values of n as 32, 64, 128, 256, 512, 1024, and

2048 is used to produce results.

https://doi.org/10.1371/journal.pone.0188721.g007
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changes. We used data set size, n, with values 32, 64, 128, 256, 512, 1024, 2048, and 4096 to

evaluate Rubus. As shown in Fig 9, Aparapi performance is bit better than the Rubus when

used to generate Mandelbrot set. A speedup of 31.76x is experienced on input size 4096, which

is less than the Aparapi which is 36.2x. Recall that the Aparapi code is manually written and

Fig 8. Convolution benchmark. Convolution filtering is used to modify the characteristics of an image. The

images of dimensions n × n, with n as 32, 64, 128, 256, 512, 1024, 2048, and 4096 are used to produce above

graph.

https://doi.org/10.1371/journal.pone.0188721.g008

Fig 9. Mandelbrot benchmark. The Mandelbrot set is the problem of complex dynamics. Data set size, n,

with values 32, 64, 128, 256, 512, 1024, 2048, and 4096 is used to evaluate Rubus.

https://doi.org/10.1371/journal.pone.0188721.g009
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carefully optimized for parallelism as compared to the automatically generated code by Rubus.

Thus, for this problem Rubus underperformed slightly as compared to Aparapi.

3.5 N-body simulation

N-body Simulation is a well-known problem in astronomy and physics, that is simulated on

a system of particles. The particles are influenced by physical forces. N-body simulation

computes new positions of particles influenced by some physical forces like gravity. We

used the number of bodies as 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, and 65536.

As shown in Fig 10, a speedup of 50x was achieved by the Rubus on input size 65536

while on the same input Aparapi provides only 21.39x speedup as compared to its Java

implementation.

3.6 Squares

In this benchmark, squares of values of a given vector are computed. This benchmark uses the

Math.pow() function. We used array sizes of 1024, 2048, 4096, 8192, 16384, 32768, 65536, and

131072. As shown in Fig 11, on large input, Rubus provided a speedup of 1.21x. The reason for

this small speed up is that the problem is data driven with small computation therefore the ker-

nel contains small computation and the computational gain in parallel version of Rubus is sub-

sided by the large data transfer overhead. In contrast, Aparapi is slower by 3.8x as Aparapi

performance decrease while using the math functions.

Another important factor is GPU’s memory which can affect the execution speed of a pro-

gram. If GPU’s memory is smaller than the data size, it may take multiple iterations to copy

the required data to GPU’s memory before execution. This means that the data copy overhead

would be higher, which would result in speed down of the transformed code. Increasing data

size would also decrease the performance accordingly.

Fig 10. N-body benchmark. N-body Simulation is a well-known problem in astronomy and physics. The

number of bodies as 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, and 65536 are used to produce above

graph.

https://doi.org/10.1371/journal.pone.0188721.g010
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3.7 Real-time movie convolution

In the previous sections we have provided results on five different benchmarks. Each of these

benchmarks has numerous applications, from solving mathematical problems to computer

vision. This subsection presents one such application by applying convolution in real-time on

a well-known high quality Big Buck Bunny’s video [14]. We have developed a tool to apply

convolution on different videos. Our tool takes as input a video and a set of filter parameters to

be applied on that video. Based on the input it shows the live effects of the filter parameters

being applied on the video while showing the performance ratios of Rubus and Aparapi with

respect to Java.

Different 3x3 matrices are used to perform various filters on the video including edge detec-

tion, sharpen, box blur, Gaussian blur, Emboss, and outline detection. Based on these convolu-

tions, an average transformation time has been taken over four different video resolutions. Fig

12 shows that with the increase in the video resolution, Rubus performance becomes signifi-

cantly better than serial Java program.

Finally, Table 1 shows the summary of our benchmarking. It shows the speedups achieved

by using Rubus and Aparapi with respect to Java code. Java execution time is normalized to 1

and performance of Rubus and Aparapi is calculated accordingly.

4 Related work

In this section, we have described various tools that can utilize the computational power of

multiple processing units available in the modern computers. To this end, we have divided

these tools in two different main categories that are further divided into some subcategories.

Firstly, we have described the tools that operate on Java source or bytecode. As these tools

are somewhat similar to Rubus hence we have also highlighted Rubus superiority over them.

Secondly, we have listed notable tools that work with languages other than Java or Java

bytecode.

Fig 11. Squares benchmark. In this benchmark, squares of values of a given vector are computed. The

array sizes of 1024, 2048, 4096, 8192, 16384, 32768, 65536, and 131072 are used to produce above graph.

https://doi.org/10.1371/journal.pone.0188721.g011
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4.1 Java tools for parallelism

Many existing tools work on the Java source code such as, JavaCL [6], JCUDA [4], JOCL [5],

Rootbeer [8], Aparapi [7] and HJ-OpenCL [15]. Unlike these tools, Rubus works on Java byte-

code. Thus, Rubus can parallelize code for all those programming languages that produce

intermediate Java bytecode. Furthermore, The aforementioned solutions are different from

Rubus in many ways. JavaCL and JOCL are Java bindings of OpenCL, which provides the facil-

ities to use OpenCL/CUDA in Java syntax. In contrast, Rubus is a compiler which seamlessly

performs optimizations in the Java bytecode to take advantage of the underlying GPUs. Rootb-

eer and Aparapi are user-friendly libraries which provide a very high-level interface to work

with CUDA [3] and OpenCL [16] respectively. However, in order to use them the user needs

to know some GPU programming concepts and should be well aware of the art of parallel pro-

gramming. In contrast, no knowledge of GPU and parallel programming is needed to make

code parallel using Rubus.

HJ-OpenCL [15] is also a compiler, which transforms Habanero-Java (HJ) code into

OpenCL. HJ is an extension for Java, that provides some additional constructs for parallel

programming using multicore processors. Unlike Rubus, HJ-OpenCL works with HJ only,

which requires the use of a specific HJ compiler to compile the code. Another main difference

between Rubus and HJ-OpenCL is that the HJ-OpenCL uses a parallel construct to manually

Table 1. Summary of results: Performance ratio of Rubus and Aparapi versus Java.

Benchmarks Rubus Aparapi

Matrix Multiplication 83.93 4.3

Convolution 5.83 5.45

Mandelbrot 31.76 36.2

N-Body Simulation 50 21.39

Squares 1.21 −3.8

https://doi.org/10.1371/journal.pone.0188721.t001

Fig 12. Real-time video convolution. The above graph is produced by applying convolution in real-time on a

well-known high quality Big Buck Bunny’s video [14]. Different 3x3 matrices are used to perform various filters

on the video.

https://doi.org/10.1371/journal.pone.0188721.g012
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identify the code snippets that can run in parallel. On the other hand, Rubus does not need

any such type of hints from the programmer to transform the code for parallelism.

Java-gpu [17] on which Rubus is based performs similar optimization on the bytecode to

make it run in parallel. However, it compiles the code into CUDA code and supports Nvidia’s

GPU only. On the other hand, Rubus supports all OpenCL-enabled GPUs and CPUs, and

requires no extra tools to be installed except OpenCL drivers.

4.2 Non-Java tools for parallelism

Many tools are available that can be used to transform programs written in languages other

than Java into OpenCL or CUDA. We briefly discuss some of these tools in this section.

Python. For Python there exist PyCuda [18], PyOpenCL [19], and CopperHead [20].

PyCUDA [18] is an API written in Python which lets user work with CUDA using Python. It

requires the kernel to be written in CUDA code. PyOpenCL [19] is a Python binding of

OpenCL to work with parallel hardware. CopperHead [20] is another framework written in

Python to work with Nvidia’s GPU and multicore CPUs using OpenMP.

JavaScript. RiverTrail [21] extends JavaScript and adds some parallel constructs which

are then converted to OpenCL at run time. WebCL [22] is a JavaScript binding of OpenCL

which runs in a browser without requiring any browser plugin.

C/C++. Some other tools transform C/C++ code for parallelism. These tools include

ArBB [23], OpenVIDIA [24], and OpenACC [25]. Intel ArBB [23] is a C++ library which

works with standard C++ compilers. It focuses on thread parallelism by executing code on

multi-core systems. OpenVIDIA [24] is an API written in C/C# to perform computer vision

and image processing operations on GPUs. OpenACC [25] is a programming standard for

parallel computing. Using OpenACC a user can specify C, C++ and Fortran code portions

using some directives to run them in parallel on parallel hardware.

Others. Firepile [26] is a library for Scala developers to work with GPUs. Code is

completely written in Scala and Firepile converts kernel code into OpenCL to run it on a GPU.

ASDP [27] is a domain specific language based on ActionScript designed to use GPU and mul-

ticore CPU to achieve data level parallelism.

5 Conclusion

This paper presents the design and implementation of a new compiler Rubus for seamless

parallelism. The Rubus compiler takes as input serial code, analyses and transforms it into

parallel code so that it can be executed on multiple cores of CPUs/GPUs. Although the pro-

cess of transformation is automated but the programmer may optionally provide hints to the

compiler to further improve the compiler’s performance. The Rubus is designed on principle

that significant data level parallelism can be achieved by executing concurrent loop iterations

in parallel. Rubus transforms the loops into OpenCL kernel and merges generated code with

actual bytecode. Main advantage of the Rubus is that the original source code remains simple,

robust and easy to debug while the intermediate code generated by Rubus is prime to run in

parallel. Furthermore, a legacy sequential program or a library that was written years before

the invention of GPU may also run in parallel using the Rubus compiler. Rubus performance

on vast varieties of programs from different areas of life has been evaluated and a significant

execution speedup has been experienced on large input sizes. Compared to Java implementa-

tion, execution speedup up to 84 times has been achieved by Rubus on a basic GPU having

only 96 cores.
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6 Limitations and future work

In this section we highlight the limitations of Rubus and suggest possible future work. Many of

these limitations are also mentioned in other relevant sections but this section consolidates

them in one place. A majority of the existing tools heavily rely on programmer’s input to pro-

duce parallel code. In contrast, Rubus uses data-flow analysis to find, analyze and transform

loops automatically. To run a loop in parallel on a GPU, there must not be any RAW (Read

After Write) and WAW (Write After Write) dependencies across iterations. Furthermore,

there should not be any loop carried dependencies. The current data-flow analyzer of Rubus is

not inter-procedural. Thus it cannot detect if two methods are data independent from each

other and can be executed in parallel. The data-flow analyzer of Rubus also cannot detect if

two Java threads may be executed in parallel. To compensate for some of these limitations

Rubus allows programmers to use compilers directives to improve it’s capabilities.

Planned future works include the support of multiple if/else statements inside the loop

body, custom data types, string, multi-dimensional arrays and collection. To improve transfor-

mation, some advanced data dependency analysis techniques like GCDTest [28] will be imple-

mented. Rubus currently copies all data to the GPU’s global memory, which takes more time

to access as compared to local and the shared memory of each core and results in slowdown of

the execution speed. In future, local and shared memory block of GPU would be used where

possible to further increase the performance. Furthermore, Rubus copies the whole data arrays

to the GPU, incurring overhead. We will optimized Rubus, in future, to identify and copy the

exact indexes of array being used for additional speedup.

Current release of Rubus uses JavaGPU to parse classfiles thus Rubus does not work on all

the classfiles that cannot be correctly parsed using JavaGPU. To fix that issue, in a future

release, we will write our own classfile parser.
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18. Andreas Klöckner, Nicolas Pinto, Yunsup Lee, Bryan Catanzaro, Paul Ivanov, Ahmed Fasih, et al.

Pycuda: Gpu run-time code generation for high-performance computing. Arxiv preprint arXiv, 911,

2009.
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